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Xumerical Determination of Shoi-t Period Trojan Orbits 
in the Restricted Three Body Problem 

Edson F. Gooarich 

ABSTRACT 

In ;hc plane restricted three body problem, two classes of periodic 

orbizs exist around the equilateral libration poir,ts, Rabe developed 

methods for determining members of the class of long p e r i d  orbits 

with Gclpiter and the Sun as principal masses. This report demon- 

strstes the use of these methods t o  esaniiiie the class of short period 

orbits. Power series expansions permit the solution of the relevant 

equations of motion on an IBM 7094 computer; closed form recurrence 

formulae allow the computation of the coefficients of the power series. 

Knowledge of the value for the Jacobi constant gives approximate initial 

conditions for short period orbits near the libration points. An itera- 

tion scheiiie improves the initial conditions to periodic conditions. For 

the staxing positions used, two types of short period orbits are com- 

p t e d  with an accuracy of twelve significant figures. The Jacobi con- 

stam decreases as the orbit size hcreases  and deviates farther from 

the lib: .ion point. The periods of all orbits differ by less than one 

percent from the period of Jupiter's motion around the Sun. 

orbits aroclnd the Sun closely represent the short period orbits, and 

the eccentricities of these elliptical orbits approach unity as the devia- 

tions from the libration point increase. A linear stability study 

indicates instability for all orbits determined. 

Elliptical 
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e::'s,ence cf ixriodic orbits of the infiniwsimal mass about the two equilateral 

LrL;;:-.;gian li'x-ation points. 

;LC,L-.,XIS consisting of short period and ;ong pel-iod orbits. 

These periodic orbits fall into two general c1LcLssi- 

". . The short period 

or'3i- bb 7 have periods on the order of the period of thc two principal masses about 

6 -  . 
b L - ~ : : -  2ornxa:; ci_?nter of mass. 

r n s ?  ratio 0, tile finite masses. With tk?  Sun xiid Jupiter 8s predominant masses, 

The per;ods of iolig period orbits depend on the 

: :ost numerical investigations give results of a few significant figures. 

1 - h : ~ ~ :  (1961; showed to  a high degree of accuracy that orbits exist for the ciaas 

G i  .;.-A period orbi;s. 

:Lc sr,ort period orbits. This present work is an effort to characterize, to a 

.:-&k Aspee of accuracy, the family of shoi-t period orbits. 

- .  Tu ;i iiiniteir deg~qet' of ;~ccuracy, Willard j i9i3)  examined 

5 -2ffer:sen (1956) developed a numerical integration scheme for solving the 

eciuations ~i motion in which he introduced two auxiliary variables and expanded 

tFe coordinates in powers of the time. He derived recurrence formulae in closed 

forxi for  the coefficients of the power series. 

For th? case considered, the Sun and Jupiter represent the predominant 

x x s e s  an6 2 Trojan asteroid represents the infinitesimal mass. By assumption, 

the Sun and Jupiter move about their common center of mass in concentric circles 



uidisturbz? k-  i he  Trojzri's presence :Lad thc 'Trojan reinnins i i l  the plane oi rhc. 

3A%lC,s of LI?? Sun and Jupiter. 

The :i-y reierence system used h s  its origin at Jupiter and rotates with 

-';arm aguiar velocity with the Sun iised i n  the system on the positive s-axis. 

-'.i? unit of distance is the Jupiter-Sun distance, the unit of mass is  the mxss of 

2 Sun, and the unit of time is such that the gravitational constant is unity. If 

I X, six3 P represent the mass, mem motion, and period of Jupiter respec- 

u A - k  ~ l y ,  :hen N2 = 1 i M and P = 27~/N. For t& study, 11 = .00095478610 from 

A - I I L ; ' ~  value for the mass ratio of Jupiter and the Sun. 

Modification of one of the auxiliary variables of Steifensen's method by the 

h : a r  X, as suggested by Rabe (19GI), speeds convergence of the power series. 

-ytC. ~ense: i ' s  method is ideally suited for use with a high speed computer. Ap- 

?~-~x.irnz;e starting conditions for a periodic orbit of short  period used with an 

iLcrative procedure yield periodic orbits of high precision. 

orbits around libration point L, . Symmetry considerations yield results for or':=lis 

around the other equilateral libration point L, . 

' ._ 

This report considc.=s 

2. DETERMINATION OF APPROXI3LiTE INITIAL CONDITIONS 

Finding periodic orbits by ai iterztion procedure requires starting values 

xg ,  yo , ko,  Po which result in a return of the particle to the near vicinity of the 

bLariing p b A L l U 1 1  -- -*;+I. wlc l l  -7nl vULvu-r nnitTJT rnmnonents _ _ _ -  of the same order of magnitude and 

algebraic sign as the initial values. To find the initial conditions for the long 

perlod orbits, RaLe assux,cd that., zit 2 p i n t  A,  the first and second derivatives 

Of the velocity with respect to time were zero. This starting point on the line 

.oining the Sun and L, is such that L, lies between the Sun and the point A as 

shown in Fig. 1. This assumption enables the derivation of a quadratic 
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Figure 1 -The rotating coordinate system 
with a typical periodic orbit. 
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expression for the initial velocity components in terms of position. The smaller 

of L A  two :cots to  this equation proves satisfacioiy for the approximate long 

peric;6 orbii starting conditions. The larger root to  the quadratic should yield a 

good c-pproxiination for starting the shorn period orbits, but trial results proved 

nega,;ve. The large first  and second derivatives for those orbits invalidate the 

3o r  10;;g period orbits, the velocity at point A is nearly perpendicular to the 

liE2 SA connecting the Sun and the point A. This should hold for short period 

orbits which deviate only slightly from the librstion point. The final results 

veriA:',- this. E p represents the ratio of velocity components at the starting 

poii?, such that p = sio /& at t = 0, then p is approxiniately .577 for small orbits. 

Furthermore, for  short period orbits, Charlier (1905), shows that the Jacobi 

integral yields C < 3 (1 + M) where C is the Jacobi constant. This inequality 

relates the initial position to  the initial velocity, I/ = ( k l  + 9: )'. These two 

Conditions permit the determination of good approximate initial velocity com- 

ponents for starting positions along the line SA and near to  the libration point. 

4 
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3. ITERATION TOA PERIODIC ORBIT 
4 

\ An IBM 7094 digital computer performs the computations involved in double 

e. precision. The approximate starting position components xo, yo and velocity 

components k,, , Jio are read into the computer along with the time interval and 

tolerance desired for the numerical integration. The step-by-step integration 

terminates when the trajectory approaches the starting point A and crosses the 

line SA. The point of crossing is found to a high degree of accuracy, the final 

: 

time interval adjusts such that, within the tolerance specified, the final point of 

the orbit coincides with a point on SA. The orbit does not close since the initial 

conditions approximated periodic conditions. We must now improve the orbit. 

Holding the starting position fixed, we must alter the initial velocity such 

that the orbit is periodic. If the subscript f denotes the final values of the com- 

ponents, then yf = y(x,) since the end position is forced to  lie on SA. From the 

Jacobi integral, C = C(xf,yf,kf,Jjf), and for points along SA greater than one 

unit from the' Sun, C is monotone increasing. Therefore, if kf and +f are equal 

to  io and i,, respectively, x f  = xo and yf = yo since C remains constant. A 

differential correction procedure proves satisfactory for improving the initial 

conditions for  orbits with small values of A, where A is the distance from A to  

the libration point. This method fails for values of A greater than approximately 

.50. 

A brute force method used in this difficult region actually works for any . 

value for A. With this method, the velocity components for a given A are specified 

in terms of p and v .  A small arbitrary change made in p while holding z, fixed 

permits the computation of the change in the quantity Ak = ?', - go with respect . 

5 

b 



, 

6 

t o  p. Linear interpolation gives a new value for  p which forces AA toward zero. 

A& decreases by several orders of magnitude rather than become zero since the 

system is nonlinear. Repetition of the procedure reduces & to the required 

C 

tolerance. Now introduce a small arbitrary change in I/. This causes A* to  

become large again and p must again be adjusted until Ak meets' the tolerance. 

These two sets of starting conditions with& arbitrarily small permit the com- 

putation of a new value for v which forces r j r  = 9, - go toward zero. Again, the 

reduction is by several orders of magnitude. Iteration of this process forces 

Ak andA9 to meet the tolerance. This procedure works best if the arbitrary 

changes in p and v cause Ak and A$ to  change sign and decrease in absolute value. 

Computing the Jacobi constant and noting any resulting change provides a 

continuous check on the computational accuracy. Variations in C indicate corres- 

ponding er rors  in the accuracy of the results. The converse is not true, however, 

since C can remain constant though errors  exist in the results. Solving the 

equations of motion using a high order Runge-Kutta integration scheme provides 

a final check on the results. Examination of the final periodic orbits in this I 

manner shows all orbits correct t o  at least twelve significant figures. 

4. FINDINGS ON THE SHORT PERIOD ORBITS 

Periodic orbits were found for values of A beginning with h = .02 and in- 

creasing in equai intervais of .02 up io h = .SO. VvG-iiz i;!&cr! iz the r&ating 

frame of reference, the first orbits determined appear to be elliptical in shape 

as shown in Fig. 2. The shape changes as h increases beyond a value of about 

.24 where the side nearest the Sun flattens out and eventually bends inward 

toward L, and away from the Sun. As h increases further, the orbits dip closer 

6 
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Figure 2-Short period orbits for 
A =  .12, a, .a, .4a. 

and closer t o  the x-axis in the vicinity of the libration point L, as illustrated in 

Fig. 2. Finally, as seen in Fig. 3, the orbits cross the x-axis. 

Figure 3-Short period orbit for A = S O  
and the branch point orbit. 

An attempt to iterate initial.conditions for h = .52 io a per id ic  f~1e.l. 

Further examination revealed that two different periodic orbits exist for A = .514, 

no periodic orbit of this type exists for A = .515 and indeed two orbits exist for 

value of A below some branch point value where the orbits are identically the same 

orbit. This branch point orbit, shown in Fig. 3, occurs at A = .514 325 370. 
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6 As A decreases from the branch point, the second type of orbit dips further 

below the x-axis and passes closer and closer to the Sun. Passing near the Sun 

results in large coefficients of the power series expansions; and for passage too 

close, the coefficients exceed the computer's capacity. A reduction of the time 

interval decreases the number of terms required in the expansion; however, the 

powers of the time interval become too small for the machine. As a result, we 

show the second type of orbit for values of A only dawn to  A = .36. Figure 4 

represents several ,of these orbits. 

Figure 4-Type II short period orbits for 
A =  .48, .42, .36. 

Call the smai'rer of the two u1u11.p - - L 2 ~ -  L- AWL - ,+ran b L W V 1 1  X Type Ii m d  call the larger 

Type 13[. Figure 5 identifies the two orbits for A = .40. All Type 11 orbits cross 

the x-axis. Type I orbits for  A = .48 and less do not cross the x-axis, but for 

A = .50 and greater they do cross. For A = .496 690 858, the orbit just touches 

the x-axis in the neighborhood of x = 1.85. 
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Figure 5-Type I and Type II short period 
orbits for A = .40. 

3 

5 .  STARTING CONDITIONS AND ORBIT PERIODS 
, 

Table I and Table 111 give initial position and velocity components for Type I 

and Type 11 orbits respectively. The xo and yo coordinates depend linearly on 

A. Both components of velocity increase for Type I orbits as A increases to  the 

,branch point. For Type 11 orbits, as A decreases from the branch point, 2, 

decreases but j ,  increases. The branch point values for quantities in these 

tables are x, = .242 837 315, yo = 1.311 444 240, 2, = .749 352 314, 

jb  = .829 243 523. 

m-t-1-- = --A Txr I:-+ +he .ml..-n fnv tho nnrind T and the .Tacohi conetmt c 
I a U l G 3  II QLlU & V  L W C  b11G VULUUY &VI w - a w  y w - - - - -  --- --- 

as well a s  p and v for Type I and Type II orbits respectively. Branch point 

values are p = 1.106 613 681, v = 1.117 664 400, T = 6.284 760 760, 

C = 2.367 857 918. Figure 6 shows a plot of p vs A for short period orbits. 

p increases nearly linearly with A for Type I orbits until A = .40. Figure 7 is a 
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Figure 6-Variation of p with h for 

periodic orbits. 
i 

Figure 7-Variation of u with h for 
periodic orbits. 

6 

similar plot of v vs A. Again the behavior is nearly linear until h = .40. 

u reaches a maximum (at least a local maximum) of just Over 1.20 in the 

neighborhood of A = .44 for the Type II orbits. 

The period and Jacobi constant decrease with increasing h for Type I orbits. 

They continue to decrease a8 A decreases from the point for Type II orbits. 

Notice that in the vicinity of h = .42 there exists an orbit for which the period 

equals the period of Jupiter, P = 6.280 187 905. 
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Figure 8-Short and long period &bits 
for h = .02. 
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In a nonrotating frame of reference these short period Trojans move in 

perturbed elliptical two-body orbits with the Sun as the principal body and with 

Jupiter supplying the disturbing force in a periodic manner. An ellipse will, 

therefore, approximate the  Trojan motion. Using the initial position and velocity 

in the fixed reference system, we compute the semi-major axis, a, and the ec- 

centricity, e, as the approximating elliptical elements for each orbit. Table V 

and Table VI  list a and e for Type I and Type II orbits respectively. For the 

branch point orbit, a = 1.001 076 088 and e = .730 135 639. 

6 .  COMPARISON WITH LONG PERIOD ORBITS 

Notice the slight variations of the periods over the entire range of orbits 

computed. The period deviates less than one-third of one percent from the 

period of Jupiter. Contrast this with the long period orbits which range from 

about six times the orbital period of Jupiter t o  an orbit of infinite period. 

For Type I short period orbits, the value of the Jacobi constant approaches 

the quantity 3(1+M) from below as A approaches zero. For the long period orbits, 

C tends toward the same value from above as A goes to zero. A plot of the long 

period orbit with the short period orbit for A = .02 in Fig. 8 shows the relative 

sizes of the two orbits. 
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As h increases, the long period orbits take on a horseshoe shape and are 

quite different from the short period orbits which only gradually bend around the 
0 

Sun. It appears that, as X decreases the Type II orbits will take on the horseshoe 

shape, though they will be much thicker than the long period orbits and not sym- 

metrical with respect to  the x-axis. 

For the short period orbits, the initial velocities exceed those for the corres- 

ponding long period orbits. This accounts for the shorter periods and lower values 

of the Jacobi constant for the short period orbits. 

7. LINEAR STABILITY 

To examine the stability of the short period orbits, we use Hill's first order 

equation 

d2r) + 9 ( U ) r )  = 0, 
du 

as treated by Message (1959) and Rabe (1961). In this equation, r)  represents 

the transversal displacement of a Trojan deviating from a periodic reference 

orbit in some disturbed trajectory. If m = 2 then u = m (t-to) defines the new 

independent variable. Knowing a set of special values for points along the orbit, 

we expand the function e(u) in a Fourier series of the form 

T' 

i 
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Assume the solution of Hill 's  equation has the form 

k = - m  

Substitution of the expressions for 9(u) and -q into Hill 's equation produces a set 

of identities from which successive approximations for c can be made. 

From the assumed form of the solution, notice that if c is real, stability 

exists since -q must be periodic and the transversal displacement is bounded. 

However, for c complex, the orbit is unstable since q then increases without 

bound either when time increases or decreases to  infinity. 

The orbits appear unstable since three approximations to  c all prove com- 

plex. In all cases, the second and third estimations for c agree to two significant 

figures indicating probably convergence of the sequence. This indicated insta- 

bility for the first order study, especially for the orbits of small values of A ,  

, leads to  contradictory conclusions. For infinitesimal orbits, the actual motion 

of a non-periodic Trojan will never deviate substantially from the equilateral 

libration point. Therefore, at least for small orbits, the motion should be 

stable. It appears that for the short period orbits the oscillation of 77 does not 

remain infinitestimally small, apd iarge vaiues d & s t r q  the first sr&r 

accuracy. A higher order study should clarify this stability problem. 

8. CONCLUSION 

Several members of this family of short period Trojan orbits closely re- 

semble those found by Willard except for larger values of A; however, he himself 
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.. questions the results for his large orbits. In this present work, sixteen signifi- 

cant digits were carried throughout the computations and a minimum of twelve 

figures of accuracy were obtained. The Jacobi constant, computed at each step 

of the integration agrees to at least eleven significant places. 

As A decreases from the branch point for Type 11 orbits, the general trend 

of the family is well indicated. The orbits pass closer and closer to the Sun 

while bending further around it. Still, it is difficult to  visualize a natural ending 

to  the family. Collision with the Sun is the most probable. This question is left 

for further study. 
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h 

- .02 
.04 
.06 
.08 
.10 
.12 
.14 
.16 
.18 
.20 
.22 
.24 
.26 
.28. 
.30 
.32 
.34 
.36 
.38 
.40 
.42 
.44 

. .46 
.48 
.50 

Table I 

Initial Conditions for Type I Short Period Orbits 

X O  

.490 000 000 

.480 000 000 

.470 000 000 

.460 000 000 

.450 000 000 
,440 000 000 
.430 000 000 
.420 000 000 
.410 000 000 
.400 000 000 
.390 000 000 
-380 000 000 
.370 000 000 
.360 000 000 
.350 000 000 
.340 000 000 
.330 000 000 
,320 000 000 
.310 000 000 
.300 000 000 
.290 000 000 
.280 000 000 
.270 000 000 
.260 000 000 
.250 000 000 

.* YO 

.883 345 912 

.900 666 420 

.917 986 928 

.935 307 446 

.952 627 944 

.969 948 452 

.987 268 960 
1.004 589 478 
1.021 909 986 
1.039 230 485 
1.056 550 993 
1.073 871 501 
1.091 192 009 
1.108 512 527 
1.125 833 025 
1.143 153 533 
1.160 474 041 
1.177 794 549 
1.195 115 057 
1.212 435 565 
1.229 756 073 
1.247 076 581 
1.264 397 090 
1.281 717 600 

X O  

.034 212 992 

.067 699 676 

.loo 497 749 

.132 643 610 

.164 172 472 

.195 118 459 

.225 514 747 

.255 393 641 

.284 786 831 

.313 725 469 

.342 240 428 
,370 362 551 
.398 122 977 
.425 553 556 
.452 687 410 
.479 559 700 
.506 208 733 
.532 677 605 
.559 016 792 
.585 288 470 
.611 574 310 
.637 991 023 
.664 726 267 
.692 142 897 
.721 255 887 

.020 214 565 

.049 035 041 

.062 146 545 

.083 838 047 

.lo6 002 435 

.128 636 650 

.151 741 902 

.175 323 990 

.199 393 764 

.223 967 746 

.249 063 981 

.274 728 209 
,300 985 453 
.327 892 236 
.355 514 710 
.383 938 172 
.413 273 799 
.443 668 953 
.475 323 993 
.508 520 700 
.543 674 791 
.581 442 614 
.622 971 901 
.670 643 365 
.731 531 835 
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h 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 

.24 

.26 

.28 

.30 

.32 

.34 

.36 

.38 

.40 

.42 

.44 

.46 

.48 

.50 

Table 11 

Values of p ,  , T, C for .Type I Orbits 

P 

.590 844 686 

.604 656 383 
,618 387 438 
.632 054 922 
.645 677 281 
.659 274 632 
.672 869 115 
,686 485 339 
.700 150 929 
.713 897 237 
.727 760 256 
.741 781 825 
.756 011 259 
.770 507 569 
.785 342 605 
.800 605 580 
.816 409 835 
.832 903 333 
.850 285 716 
.868 837 720 
.888 975 849 
.911 364 883 
.937 185 623 
.968 937 726 

1.014 247 299 

U 

.039 738 614 

.079 113 360 

.118 160 867 

.156 917 640 

.195 420 360 

.233 706 228 

.271 813 357 

.309 781 235 

.347 651 280 

.385 467 535 

.423 277 530 

.461 133 395 

.499 093 326 

.537 223 555 

.575 601 077 
.614 317 529 
.653 484 894 
.693 244 236 
.733 779 716 
.775 342 438 
.818 294 210 
.863 196 419 
.911 018 660 
,963 755 318 

1.027 301 748 

T 

6.300 603 307 
6.300 560 685 
6.300 489 448 
6.300 389 288 
6.300 259 756 
6.300 100 256 
6.299 910 032 
6.299 688 156 
6.299 433 511 
6.299 144 770 
6.298 820 369 
6.298 458 466 
6.298 056 899 
6.297 613 110 
6.297 124 059 
6.296 586 078 
6.295 994 677 
6.295 344 227 
6.294 627 459 
6.293 834 611 
6.292 951 849 
6.291 958 085 
6.290 817 485 
6,289 457 405 
6.287 665 797 

C 

3.002 469 808 
3.001 283 555 
2.999 297 572 
2.996 498 052 
2.992 865 000 
2.988 371 681 
2.982 983 933 
2.976 659 259 
2.969 345 680 
2.960 980 227 
2.951 486 985 
2.940 774 502 
2.928 732 318 
2.915 226 242 
2.900 091 769 
2.883 124 701 
2.864 067 354 
2.842 587 507 
2.818 244 797 
2.790 433 880 
2.758 280 861 
2.720 434 612 
2.674 581 000 
2.616 020 220 
2.531 098 829 
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x 
.51 
.50 
.49 
.48 
.47 
.46 
.45 
.44 
.43 
.42 
.41 
.40 
.39 
.38 
.37 
.36 

Table 111 

Initial Conditions for  Type II Short Period Orbits 

X O  

.245 000 000 

.250 000 000 

.255 000 000 

.260 000 000 

.265 000 000 

.270 000 000 

.275 000 000 

.280 000 000 
,285 000 000 
.290 000 000 
,295 000 000 
.300 000 000 
.305 000 000 
.310 000 000 
.315 000 000 
.320 000 000 

YO 

1.307 698 360 
1.299 038 106 
1.290 377 852 
1.281 717 598 
1.273 057 344 
1.264 397 090 
1.255 736 835 
1.247 076 581 
1.238 416 327 
1.229 756 073 
1.221 095 819 
1.212 435 565 
1.203 775 311 
1.195 115 057 
1.186 454 803 
1.177 794 549 

ir, 
,750 773 138 
.744 193 944 
.735 677 484 
.726 306 297 
.716 385 031 
.706 053 775 
.695 391 653 
.684 449 000 
.673 260 456 
.661 851 234 
.650 240 472 
.638 443 171 
.626 471 402 
.614 335 072 
.602 042 457 
.589 600 559 

YO 

.875 606 527 

.909 782 831 

.930 854 592 

.946 762 135 

.959 686 855 

.970 609 262 

.980 070 591 

.988 407 217 

.995 845 229 
1.002 545 323 
1.008 626 625 
1.014 180 390 
1.019 278 400 
1.023 978 354 
1.028 327 485 
1.032 365 065 
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A 

.51 

.50 

.49 
48 
.47 
.46 
.45 
.44 
.43 
.42 
.41 
.40 
.39 
.38 
.37 
.36 

Table IV 

Values of p z/ T, C for Type 11 Orbits 

P 

1.166 273 116 
1.222 507 706 
1.265 302 544 
1.303 530 121 
1.339 624 384 
1.374 695 946 
1.409 379 285 
1.444 091 842 
1.479 138 155 
1.514 759 316 
1.551 159 407 
1.558 521 009 
1.627 015 052 
1.666 807 577 
1.708 064 726 
1.750 956 726 

U 

1.153 406 735 
1.175 384 799 
1.186 470 240 
1.193 264 169 
1.197 583 555 
1.200 247 589 
1.201 710 412 
1.202 255 905 
1.202 076 271 
1.201 309 361 
1.200 058 473 
1.198 403 750 
1.196 409 158 
1.194 126 982 
1.191 600 830 
1.188 867 717 

T 

6.283 419 569 
6.282 467 090 
6.281 900 834 
6.281 486 197 
6.281 158 537 
6.280 888 762 
6.280 660 813 
6.280 464 722 
6.280 293 806 
6.280 143 329 
6.280 009 797 
6.279 890 547 
6.279 783 497 
6.279 686 988 
6.279 599 668 
6.279 520 427 

C 

2.277 381 564 
2.204 918 285 
2.157 773 902 
2.120 965 157 
2.090 320 805 
2.063 941 724 
2.040 765 689 
2.020 123 410 
2.001 558 590 
1.984 742 094 
1.969 426 214 
1.955 418 229 
1.942 564 151 
1.930 738 219 
1.919 835 830 
1.909 768 630 
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Table V 

Approximate Elliptical Elements, for Type I Orbits 

rr 
x 

.02 

.04& 

.06 

.08 

.10 

.12 

.14 
‘.16 
.18 
.20 
.22 
.24 
.26 
.28 
.30 
.32 
.34 
.36 
.38 
.40 
.42 
.44 
.46 
.48 
.50 

a 

1.001 088 026 
1.001 215 557 
1.001 338042 
1.001 455 229 
1.001 566 852 
1.001 672 630 
1.001 772 255 
1.001 865 389 
1.001 951 656 
1.002 030 633 
1.002 101 842 
1.002 164 741 
1.002 218 706 
1.002 263 019 
1.002 296 844 
1.002 319 195 
1.002 328 893 
1.002 324 502 
1.002 304 221 
1.002 265 708 
1.002 205 770 
1.002 119 722 
1.001 999 921 
1.001 831 487 
1.001 572 690 

e 

.018 895 816 
,038 773 078 
.058 705 611 
.078 723 303 
.098 857 501 
.119 141 244 
.139 609 582 
.160 299 685 
.181 252 776 
.202 511 962 
.224 125 930 
.246 148 665 
-268 641 255 
.291 673 953 
.315 329 050 
.339 704979 . 
.364 922 354 
.391 133 226 
.418 535 918 
-447 400 242 
.478 113 729 
,511 275 355 
.547 915 260 
.590 143 082 
.644 166 981 

L 
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. 
Table VI 

Approximate Elliptical Elements. for Type 11 Orbits 

h 

.51 

.50 

.49 

.48 

.47 

.46 

.45 

.44 

.43 

.42 

.41 

.40 

.39 

.38 

.37 

.36 

a 

1.000 817 788 
1.000 623 785 
1.000 504 385 
1.000 415 094 
1.000 343 471 
1.000 283 851 
1.000 233 066 
1.000 189 133 
1.000 150 706 
1.000 116 821 
1.000 086 763 
1.000 059 980 
1.000 036 038 
1.000 014 588 
,999 995 343 
.999 978 066 

e 

.769 986 921 

.798 637 191 

.815 877 208 

.828 623 875 
,838 781 100 
.847 205 780 
.854 371 430 
.860 572 473 
.866 006 795 
.870 814 967 
,875 101 074 
.878 944 708 
.882 408 323 ' 
.885 541 97.0 
,888 386 466 
.890 975 601 

z 

, 
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Figure 

1 

2 

3 

4 

I 

s 

5 

6 

7 

8 

Caption 

The rotating coordinate system'with a typical periodic orbit. 

Short period orbits for A = .12, .24, .36, .48. 

Short period orbit for A = .50 and the branch point orbit. 

Type I1 short period orbits for A = .48, .42, .36. 

Type I and Type I1 short period orbits for A = .40. 

Variation of p with A for  periodic orbits. 

Variation of v with A for periodic orbits. 

Short and long period orbits for A = .02. 
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